Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Allergy Clin Immunol ; 148(1): 91-95, 2021 07.
Article in English | MEDLINE | ID: covidwho-1291943

ABSTRACT

BACKGROUND: The mechanisms underpinning allergic reactions to the BNT162b2 (Pfizer) COVID-19 vaccine remain unknown, with polyethylene glycol (PEG) contained in the lipid nanoparticle suspected as being the cause. OBJECTIVE: Our aim was to evaluate the performance of skin testing and basophil activation testing to PEG, polysorbate 80, and the BNT162b2 (Pfizer) and AZD1222 (AstraZeneca) COVID-19 vaccines in patients with a history of PEG allergy. METHODS: Three known individuals with PEG allergy and 3 healthy controls were recruited and evaluated for hypersensitivity to the BNT162b2 and AZD1222 vaccines, and to related compounds by skin testing and basophil activation, as measured by CD63 upregulation using flow cytometry. RESULTS: We found that the BNT162b2 vaccine induced positive skin test results in patients with PEG allergy, whereas the result of traditional PEG skin testing was negative in 2 of 3 patients. One patient was found to be cosensitized to both the BNT162b2 and AZD1222 vaccines because of cross-reactive PEG and polysorbate allergy. The BNT162b2 vaccine, but not PEG alone, induced dose-dependent activation of all patients' basophils ex vivo. Similar basophil activation could be induced by PEGylated liposomal doxorubicin, suggesting that PEGylated lipids within nanoparticles, but not PEG in its native state, are able to efficiently induce degranulation. CONCLUSIONS: Our findings implicate PEG, as covalently modified and arranged on the vaccine lipid nanoparticle, as a potential trigger of anaphylaxis in response to BNT162b2, and highlight shortcomings of current skin testing protocols for allergy to PEGylated liposomal drugs.


Subject(s)
Anaphylaxis/immunology , Basophils/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Doxorubicin/analogs & derivatives , Drug Hypersensitivity/immunology , Nanoparticles/adverse effects , Polyethylene Glycols/adverse effects , SARS-CoV-2/physiology , Adult , BNT162 Vaccine , Cell Degranulation , Cells, Cultured , ChAdOx1 nCoV-19 , Doxorubicin/adverse effects , Doxorubicin/chemistry , Female , Humans , Lipids/chemistry , Male , Middle Aged , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Skin Tests , Young Adult
2.
Eur J Pharmacol ; 896: 173922, 2021 Apr 05.
Article in English | MEDLINE | ID: covidwho-1252813

ABSTRACT

The coronavirus disease (COVID-19) is spreading between human populations mainly through nasal droplets. Currently, the vaccines have great hope, but it takes years for testing its efficacy in human. As there is no specific drug treatment available for COVID-19 pandemic, we explored in silico repurposing of drugs with dual inhibition properties by targeting transmembrane serine protease 2 (TMPRSS2) and human angiotensin-converting enzyme 2 (ACE2) from FDA-approved drugs. The TMPRSS2 and ACE2 dual inhibitors in COVID-19 would be a novel antiviral class of drugs called "entry inhibitors." For this purpose, approximately 2800 US-FDA approved drugs were docked using a virtual docking tool with the targets TMPRSS2 and ACE2. The best-fit drugs were selected as per docking scores and visual outcomes. Later on, drugs were selected on the basis of molecular dynamics simulations. The drugs alvimopan, arbekacin, dequalinum, fleroxacin, lopinavir, and valrubicin were shortlisted by visual analysis and molecular dynamics simulations. Among these, lopinavir and valrubicin were found to be superior in terms of dual inhibition. Thus, lopinavir and valrubicin have the potential of dual-target inhibition whereby preventing SARS-CoV-2 entry to the host. For repurposing of these drugs, further screening in vitro and in vivo would help in exploring clinically.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , COVID-19 Drug Treatment , COVID-19 , Doxorubicin/analogs & derivatives , Lopinavir/pharmacology , SARS-CoV-2 , Serine Endopeptidases/metabolism , Virus Internalization/drug effects , Antiviral Agents/pharmacology , COVID-19/metabolism , Doxorubicin/pharmacology , Drug Repositioning , Enzyme Inhibitors/classification , Enzyme Inhibitors/pharmacology , Humans , Molecular Docking Simulation/methods , Molecular Dynamics Simulation , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Topoisomerase II Inhibitors/pharmacology
3.
BMJ Open ; 10(11): e040162, 2020 11 26.
Article in English | MEDLINE | ID: covidwho-1166469

ABSTRACT

INTRODUCTION: In breast cancer, local tumour control is thought to be optimised by administering higher local levels of cytotoxic chemotherapy, in particular doxorubicin. However, systemic administration of higher dosages of doxorubicin is hampered by its toxic side effects. In this study, we aim to increase doxorubicin deposition in the primary breast tumour without changing systemic doxorubicin concentration and thus without interfering with systemic efficacy and toxicity. This is to be achieved by combining Lyso-Thermosensitive Liposomal Doxorubicin (LTLD, ThermoDox, Celsion Corporation, Lawrenceville, NJ, USA) with mild local hyperthermia, induced by Magnetic Resonance guided High Intensity Focused Ultrasound (MR-HIFU). When heated above 39.5°C, LTLD releases a high concentration of doxorubicin intravascularly within seconds. In the absence of hyperthermia, LTLD leads to a similar biodistribution and antitumour efficacy compared with conventional doxorubicin. METHODS AND ANALYSIS: This is a single-arm phase I study in 12 chemotherapy-naïve patients with de novo stage IV HER2-negative breast cancer. Previous endocrine treatment is allowed. Study treatment consists of up to six cycles of LTLD at 21-day intervals, administered during MR-HIFU-induced hyperthermia to the primary tumour. We will aim for 60 min of hyperthermia at 40°C-42°C using a dedicated MR-HIFU breast system (Profound Medical, Mississauga, Canada). Afterwards, intravenous cyclophosphamide will be administered. Primary endpoints are safety, tolerability and feasibility. The secondary endpoint is efficacy, assessed by radiological response.This approach could lead to optimal loco-regional control with less extensive or even no surgery, in de novo stage IV patients and in stage II/III patients allocated to receive neoadjuvant chemotherapy. ETHICS AND DISSEMINATION: This study has obtained ethical approval by the Medical Research Ethics Committee Utrecht (Protocol NL67422.041.18, METC number 18-702). Informed consent will be obtained from all patients before study participation. Results will be published in an academic peer-reviewed journal. TRIAL REGISTRATION NUMBERS: NCT03749850, EudraCT 2015-005582-23.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , COVID-19 , Canada , Cyclophosphamide , Doxorubicin/analogs & derivatives , Feasibility Studies , Humans , Hyperthermia , Magnetic Resonance Spectroscopy , Polyethylene Glycols , SARS-CoV-2 , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL